Inverse problems with learned forward operators
-
Simon Arridge
, Andreas Hauptmann and Yury Korolev
Abstract
Solving inverse problems requires the knowledge of the forward operator, but accurate models can be computationally expensive, and hence cheaper variants that do not compromise the reconstruction quality are desired. This chapter reviews reconstruction methods in inverse problems with learned forward operators that follow two different paradigms. The first one is completely agnostic to the forward operator and learns its restriction to the subspace spanned by the training data. The framework of regularization by projection is then used to find a reconstruction. The second one uses a simplified model of the physics of the measurement process and only relies on the training data to learn a model correction. We present the theory of these two approaches and compare them numerically. A common theme emerges: both methods require, or at least benefit from, training data not only for the forward operator, but also for its adjoint.
Abstract
Solving inverse problems requires the knowledge of the forward operator, but accurate models can be computationally expensive, and hence cheaper variants that do not compromise the reconstruction quality are desired. This chapter reviews reconstruction methods in inverse problems with learned forward operators that follow two different paradigms. The first one is completely agnostic to the forward operator and learns its restriction to the subspace spanned by the training data. The framework of regularization by projection is then used to find a reconstruction. The second one uses a simplified model of the physics of the measurement process and only relies on the training data to learn a model correction. We present the theory of these two approaches and compare them numerically. A common theme emerges: both methods require, or at least benefit from, training data not only for the forward operator, but also for its adjoint.
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495
Chapters in this book
- Frontmatter I
- Preface V
- Contents VII
-
Part I: Mathematical aspects of data-driven methods in inverse problems
- On optimal regularization parameters via bilevel learning 1
- Learned regularization for inverse problems 39
- Inverse problems with learned forward operators 73
- Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging 107
- Learned reconstruction methods for inverse problems: sample error estimates 163
- Statistical inverse learning problems with random observations 201
- General regularization in covariate shift adaptation 245
-
Part II: Applications of data-driven methods in inverse problems
- Analysis of generalized iteratively regularized Landweber iterations driven by data 273
- Integration of model- and learning-based methods in image restoration 303
- Dynamic computerized tomography using inexact models and motion estimation 331
- Deep Bayesian inversion 359
- Utilizing uncertainty quantification variational autoencoders in inverse problems with applications in photoacoustic tomography 413
- Electrical impedance tomography: a fair comparative study on deep learning and analytic-based approaches 437
- Classification with neural networks with quadratic decision functions 471
- Index 495